CENTRO INTERNAZIONALE MATEMATICO ESTIVO
(C. I. M. E.)

TOPOLOGIA DIFFERENZIALE

1 CICLO
URBINO, 2-12 LUGLIO 1962

ESCLUSIVITA PER LA VENDITA
EDIZIONI CREMONESE
ROMA

Lire 2.000.—




CENTRO INTERNAZIONALE MATEMATICO ESTIVO
(C.LM.E. )
1° Ciclo - Urbino, 2-12 luglio 1962

. TOPOLOGIA DIFFERENZIALE

J.CERF : Invariants des paires d'espaces. Applications
a la topologie differentielle,

A. HAEFLIGER : Variétés feuilletées,

M. KERVAIRE : La methode de Pontryagin pour la classifica-
tion des applications sur une sphere.

S. SMALE : Stable manifolds for differential equations and
diffeomorphisms. .



CENTRO INTERNAZIONALE MATEMATICO ESTIVO
(C.I.M.E. )

S. SMALE

STABLE MANIFOLDS FOR DIFFERENTIAL

EQUATIONS AND DIFFEOMORPHISMS

Roma - Istituto Matematico dell'Universita



STABLE MANIFOLDS FOR DIFFERENTIAL

EQUATIONS AND DIFFEOMORPHISMS

1
S. Smale )

1. Preliminaries

A (first order) differential equation (''autonomous'') may be consi-

dered as a C® vector field X ona C% manifold M (for simplici-
ty, for the moment we take the C® point of view; manifolds are assumed
not to have a boundary, unless so stated). From the fundamental theorem

c®

of differential equations, there exist unique solutions of X through

each point of M. That is, if xe& M, there is a curve L{)t (x), |{tlce
ay (x) 0 .
such tha‘f, ‘f)o (%) —:, __.ggciﬁ_ l b=ty © X ( Lho (x) ) if ]t0|<2 R
and {’{)t (x) is ¢ on (t,x) (in a suitable domain).
Moreover if M is compact then CFt (x) 1is defined for all
té R (R the real numbers) and X defines a l-parameter group of

transformations of M.
More precisely, a l-parameter group of transformations of a mani

2.3
fold M isa C map F : R x M- M such that if (’Pt (%) = F (t, x),

then .
(a) LFO (x) = x
® ¢, @= P

Then for each t, LPt : M —=M is a diffeomorphism (a differen-

tiable homeomorphism with differentiable inverse). A differential equation

) The author was a Sloan fellow during part of this work.
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on a compact manifold defines or generates a l-parameter group of trans

formations of M. We shall say more generally that a dynamical system

on a manifold M is a l-parameter group of transformations of M.

If U(’t is a dynamical system on M, haf_l_(_).(_)_ t=0 = X (x)
defines a C% vector field on M which in turn generates ('Pt' We
also speak of X as the dynamicl system.

Let X,Y be dynamical systems on manifolds My, Mg respec-
tively generating l-parameter groups Hot’ \{/t. Then X and Y
(or th, \i/t) ~are said to be (topologically equivalent if there is a
homeomorphism h : M;—> My with the property that h maps orbits
of X into orbits of Y preserving orientation.

' The homeomorphism h : 1\/I1-> M, will be called an equivalence.
Often M; = Mo,.

The qualitative study of (1st order) differential equatiohs is the
study of properties invariant under this notion of equivalence, and ultima-
tely finding the equivalence classes of dynamical systems on a given ma-
nifold. 2)

In this paper we are concerned with the problem of topological equi

valence. An especially fruitfull concept in this direction is that of struc-

tural stability due to Andronov and Pontrjagin, see [5] . The definition

in our context is as follows.
7 Assume a fixed manifold M, say compact for simplicity, has so-
me fixed metric on it. An equivalence h: M-—-—> M  (between two dynami-

cal systems on M) will be called an & -equivalence if it is pointwise wi-

2
) For a survey of this problem see talk in the Proceedings of the Interna-
tional Congress of Mathematicians, Stockholm 1962.
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thin &  of the identity. .One may speak of two vector fields X and Y
on M as being C' close (or dC' (X,Y)« 6( ) if they are pointwise
close and in addition, in some fixed finite covering of coordinate systems
of M, the maximim of the difference of their 1st derivatives over all the
se coordinate systems is small. (Similarly one can define a c’ topolo-

gy, 1 £ rg oo, see [7] ). Then X is structurally stable if given

-

£ >0, there exists L‘S> 0 such that if a vector field Y on M sa-

tisfies dor (X, Y)<<S , then X and Y are <& -equivalent.

The problem of structural stability is:
given M compact, 'are the structurally stable vector fields on M, in
the above C' topology, dense in all vector fields. If the dimension of
M is less than 3, the answer is yes by a theorem of Peixoto [9] ; in
higher dimensions it remains a fundamental and difficult problem.

Although in this paper we are not concerned explicity with structu-
ral stability, this concept lies behind the scenes. Attempts at solving the
problem of structural stability, guide one toward the study of the generic
or general dynamical systems in contrast to the exceptional ones.

There seems to be no general reduction of the qualitative problems
of differential equations. However, there is a problem which has some

aspects of a reduction. This is the topological conjugacy problem for dif-

feomorphisms wich we proceed to describe.

Two diffeomorphisms T, T':M; —> My are topologically (diffe-
rentiably) conjugate if there exists a homeomorphism (diffeomorphism)
h: M; — My suchthat T'h =hT. Often M, = My. This topological

conjugacy problem is to obtain information on the topological equivalence
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3)
classes of diffeomorphisms of a single given manifold.
When dim M = 1, the problem is solved according to results of Poincaré,
Denjoy and others, see [2] . For dim M>1, there are very few general

theorems. We now explain the relevance of this problem to differential

equations.

2. Cross-sections

Suppose X, or q?t’ is a dynamical system on a manifold M.
A cross-section for X is a submanifold 2  of codimension 1 of M,

closed in M, such that (a) 2 is transversal to X,
(b) if x& = , thereisa t > O
with §, x) e,
(¢) if xeéXY , thereisa t< 0

with Lf)t(x)é?—: , and

(d) Every solution curve passes

through >

If X admits a cross-section =2 , one can define a map
T2 by T (x)= LPtO (x) where t, is the first t greater
"than zero with (‘Pt (x) & 2 . It is not difficult to prove that T : 22X

is a diffeomorphism, called the associated diffeomorphism of 2.
One can also easily prove that, if M is compact and connected,
then conditions (c) and (d) in the definition of cross-section are conse-

quences of (a) and (b).

3)

See footnote 2.
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U

Suppose on the other hand T, : Zo - 2—0 is a diffeomorphism

of a manifold. Thenon R x Zo let (t,x) be considered equivalent to
the point (t+1, T (x)). . The quotient space under this equivalence relation
is a new differentiable manifold say M, Let X, be the dynamical sy-
stem on M, induced by the constant vector field (1,0) on R XZO,
and T : Rx Zo-)Mo the quotient map. We say that X, on M,

is the dynamical system determined by the diffeomorphism T .2 OQZO.

2.1 Lemma

Let "Ft be dynamical system generated by X on M, which
admits a cross-section > . Then by a Cw reparameterization sy (t)
of t,x €M, one can obtain a l-parameter group Hps of traﬁsforma—
tions of M suchthatif xe3 , ¥ (x)€ 2 and Y. x)¢ 2 for
0 € s £ 1. |

We leave the straightforward proof of 2.1 to the reader.

2.2 Theorem

Suppose the dynamical system ({)t generated by X on M.
admits a cross-section 2. with associated diffeomorphism T. Let
X, on M, be the dynamical system determined by the diffeomorphism
T :2—>2 . Then X, on M, is equivalentto X on M (by a dif-
feomorphism in fact).

Proof. First apply 2.1. Then the desired equivalence of 2.2
can be taken as induced by f: M= R x2 , f( LPS (x)) = (s,x)

for x ¢ 2

2.3 Theorem

——

If Ty P o —> 2.0 is a diffeomorphism,' the dynamical sy-
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stem it determines has a cross-section 2 with the property that the
associated diffeomorphism is differentiably equivalent to Ty

For the proof of 2. 3, one just takes T (0 x Z 0) for > s
and the equivalence is induced by the map of 2 ™" R x > o given by

x > (0, x).

2.4 Theorem

Let To : 2~ .~ & 1, . =7 2 be diffeomor-
phisms which determine respectively dynamipal systems X, on Mo
and X; on M;. If T, and T; are topologically (differentiably)
equivalent then X, and X; are topologically equivalent, (equix;alent
by a diffeomorphism).

The proof is easy and will be left to the reader.

The preceeding theorems show that if a dynamical system admits
a cross-section, then the problems we are concerned with admit a reduc-
tion to é diffeomorphism problem of one lower dimension. Furthermore
every diffeomorphism is the associated diffeomorphism of a cross-section

of some dynamical system.

Remark:

The existence of cross-sections in problems of classical mechanics
first motivated Poincaré and Birkhoff [1] to study surface diffeomorphisms
from the topological point of view.

A local version of the preceeding ideas on cross-sections is espe-
cially useful. A closed or periodic orbit X of a dynamical system

L/)t on M is a solution CPt (x) with the property L{?t (x) = x

for some t # 0. A periodic point of a diffeomorphism T : >—>2
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——

is a point pe€ 2~ such that there is an integer m # 0 with ™™ (p)=p
t .
(Tm denotes the m h power of T as‘a transformation). The following

is clear.

2.5 Lemma

Let ('Pt be a dynamical system on M with cross-section 2.
and associated diffeomorphism T. Then p € 2 isa periodic point of
T if and only if the orbit of the dynamical system through p is closed.

A local diffecmorphism about p & M 1is a diffeomorphism

T : U~>M, U aneighbourhoodof p and T (p) =p. Two local dif-
feomorphisms about p; & Ml’ D) é‘-Mz, ' Tl : Up = My, Tqy: Ug—> My

are topologically (differentiably) equivalent if there exists a neighbourhood

U of p; in U; anda homeomorphism (diffeomorphism) h: U — U,
such that h (pq) = pz and Tsh (x) =h T4 (x) for x é Tl_l (U)yn u.

The following is easily proved.

2.6 Lemma A

If X 1is a vector field on a manifold M, X (p) # 0, for some
p € M, there exists a submanifold Z of codimension 1 of M con-
taining p and transversal to X.

Let 3/ be a closed orbit of a dynamical system ('Pt genera-
tedby X on M, pé ()/ . Let 2 be given by 2. 6 containing p,
with (CL 57) M Y *P. One defines a local diffeomorphism T of P
about p by T(x) = ‘70;5‘(")‘:)65 where x is in some neighbouhrood U
of p 1n 2. and t is the first t > 0 with Lft(x) &3 . Call
T @ U ~—>» ¥, the local diffeomorphism
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associated to the closed orbit 2{ s 2 a local cross-section.

2.7 Lemma

The differentiable equivalence class of T depends only on X
and the vector field X. It is independent of p and Z

Proof. Let P1, P2 & X with local cross-sections Z 1, Z 9
respectively. Assume first p; # Py Th_en we can assume

> 1 N2 g £ Define h : U—> o, for U a sufficiently small

neighbourhood of p in Z 1 by h (x) = ‘Pt (x) for x € U by tak-
ing t > 0 thefirst t suchthat ,(x) € 2>, Then h acts as
a.differentiable equivalence. If P{ = Pa: take pgé€ ( , distinct from pq,
and with local cross-section > 3. Then apply the preceeding to show °
that the local diffeomorphism of > 1 1s differentiably equivalent to th‘at

PR

of > 3 and that of > 9 s differentiably equivalent to that of 2 3.
Transitivity fineshes the proof. :

Now given a local diffeomorphism about pé€ 2 , T : U-— Z—,
one éan construct a manifold M,, with a vector field X,, containing a
closed orbit X with Z as a local cross-section. The construction is
the same as in the global case. Moreover, and this is a useful fact, the lo-

cal analogues of 2.2 - 2.4 are valid.

3. Local Diffeomorphisms

3.1 Theorem

Let A : E'—> E" be a linear transformation with eigenvalues
satisfying 0 < ,/\ i! < 1, Then there exists a Banach space structure
on E" suchthat [AJ = A < 1.

The proof follows from the fact that every real linear transformation
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is equivalent to a direct product of the following real canonical forms

[ 4 B

B A |

- * ¢ ° a:"" ' J/J""'
& o - ,‘
c ¢ !

and

- " - -

L R T

Fo'aF
o ¢ -Bd

Here § can be taken arbitrarily small, and & + iﬁ ,d — i R

are the eigenvalues, These canonical forms may be deduced from the usual

Jordan canonical form, and the following two easy lemmas.

3.1a Lemma
The linear transformations given by the following two matrices are

equivalent, where o s F are real.

ES Atcp o, O
.--rS o ) A~bf3
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3.1b Lemma
The linear transformations given by the following two matrices are

equivalent where (Y is non-zero, but otherwise arbitrary.

N A
1N '?
Lo "¥. .

O\j\ )\ ‘ \‘ O’-,X\/\

!

-
~
~

The equivalence is given by

A linear transformation satisfying the conditions of 3.1 will be cal -

led a linear contraction.

3.2 Theorem

Let T be alocal diffeomorphism about the origin 0 of En' _
whose derivate L. at 0 1is a linear contraction. Then there is an equi-
valence R between T and L. which is C')o except at 0. In fact
there 'is'a/'gwlobal diffeomorphism T' :. E® —> E" which agrees with T
in some neighbourhood of 0 and a (global) equivalenée R between

T' and L, c® except at 0,

Proof

By 3.1 we can assume |L]J < & <« 1, andthat T (x) =
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= Lx +f (x) where “ f" X“” —> 0 as Jx| — 0. Choose r > o
sothat (I T (x)|< (1 -9) jlxll for |xi < r. The following is well

known.

3. 2a Lemma
. @ n
Given r > o, there exisis areal C function (70 on K
which is one on a neighbourhood of 0, “ (-{7 (x)u £ 1 forall xe& En,
and CP(X) =0 forall || x|l 2 r.
Let f(x) = (F (x) f (x) where Cp (x) is given by 3.2a. Then

it is sufficient to prove 3.2 for TO and L where To (x) = Lix + f{x),

and TO is defined on all of E". Observe that for =i > r, T, (x) =
=Lx. Define R : E'—> E" by R(0)=0 and Rx =T " L-N_
where N is large enough so that Wr-N x I > r Itis easy to check
that R is well-defined, has the equivalence property, and is a C°° dif-
feomorphism except at 0. It remains to check that R is continuos at the
origin, or that ﬂ R&x)] — 0 as |[xll = 0. First note that there
exists k < 1, so thatfor all x €E", "I‘Ox[] < kx. Also R (x) =
= TON L-Nyg- TON y where y = LN x and we can assume Il y“ < M.
Then continuity follows from the fact that as }] x}| —> 0, the N of defi-
nition of R (x) must go to infinity.

A local diffeomorphism satisfying the condition of 3.2 is called a

9

local contraction. A contraction of E ' is a diffeomorphism T of Eq

on to itself such that there is a differentiably inbedded disk D C E Y with
. , G

T Dc interior D, M;,, TD = origin of CRART ico JTID = ol

Thus using 3.1, the T constructed in 3.2 is a contraction. If all the

eigenvalues of a linear transformation L. have absolute value greater

that one, then L 1is called a linear expansicn,
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If the derivative at p of a local diffeomorphism T about p is a linear

expansion then T 1is called a local expansion. The inverse of a linear

(local) expansion is a linear (local) contraction. In this way 3.1 and
3. 2 give information about linear and local expansions.

The following theorem was known to Poincaré for dim E = 2: One
can find n dimensional versions in Petrovsky [IO] , ‘D. C. Lewis [6:[ Y
Coddington and Levinson [2] , Sternberg [14] and Hartman [4:[ . Some
of these authors were concerned mainly with the éimilar theorem for diffe-

rential equations.

3.3 Theorem
Let T : U-—>E be alocal diffeomorphism about 0 of Eucli -
dean space whose derivative L. : E—>E at 0 is a product of
L; : E{~>E;, Ly : Ej > Ey, E=E{xEy where L4l ,
JL-1 < 1. Then there is a submanifold V of U with the following

properties:
(a) 0 ¢V, the tangent space of V at 0 is El’
(b) TV C V, and

(c) there exists a differentiable equivalence R between a local diffeo-
morﬁhism T' about 0 of E whose derivative at 0 is 1L,

and T restrictedto V,
7o)

(@ V=Y (Bj where By = UNTU and Bj is defined inducti-

velyby Bj = T-! (Bj-1 N By).

Due to the previous discussion in this section, the hypothesis of
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3.3 is mild, merely that hoeigenvalue of L has absolute value 1. One
may apply 3.2 to the restriction of T to V. Note by applying 3.3 to
T-1 - one can obtain a submanifold Vg of U containing 0 . whose tan-

gent space at 0 is Eg and T restrictedto Vg, is alocal expansion.

We call V the local stable manifold, Vo the local unstable manifold
of T at O
Use (x,y) for coordinates of E = Ej x Eg, so that one can write,

using Taylor's expansion,
T (x,y) = (L x+g (x,y), Lay+eg, (xy))
The proof of 3.3 is béged on the following iemma.

3.4 Lemma

There exists a unique Ca’ map ¢: U; = Ey, U; aneigh-
bourhood of 0 in 'El, ¢ (o) =0, ¢'(o) = 0 satisfying
3.5, PLyx+g (x, P =Ly G +ga(x P )

[

Furthermore (x, ¢(x))€ Na) j=o Bj’ Bj as in (d) of 3.3,

To see how 3,3 foll'oévs from 3.4, let V be the graph of }{ .
ie. V= (x, .¢(x)) € E;y xEy forall x in Uy, whereby 3.2 we
assume T'U; C Uy;. Thenletting R :U; —> V be defined by R(x) =
= (x, ¢ (x)), T! :'Ul - E; by T (x) = Ly x+ gy (x, ¢(x)) and
using the equation of 3, 4, it is easily verified that V, R, T' satisfy 3.3
Thus it remains to prove 3.4, '

This we do not do‘here, but remark that one solves the functional

equation 3.5 by the method of successive approximations.

4. Stable manifolds of a periodic orbit
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The global stable and unstable manifolds we construct in this section
were considered by Poincaré and Birklhoff.“ [1] in dimension 1 for a sur-
face diffeomorphism. The analagous stable manifolds for:a dynamical sy-

stem (see section :2) have been considered by Elsgoltz fS] , Thom [1 5_] .
Reeb [11] andin [12]. |

Suppose T : M ~» M is a diffeomorphism and p € M is a pe-
riodic point of T so that J i (p) = p. The derivative L. of T at
p will be a linear automorphism of the tangent space Mp of M at p.
The point p will be called an elementary periodic point of T if L

has no eigenvalue of absolute value 1, and transversal if no eigenvalue of

Li is equal to 1.

4.1 Theorem o
L.et p be an elementary fixed point of a diffeomorphism :

T:M —> M, and E; the subspace of M 1 corresponding to the eigen-

P
values of the derivative of T at p of absolute value less than 1. Then
there issa C o map R : E;—M which is an immersion (i.e. of rank=
= c}im Eq everywhere), 1-1, and has the property TR = RT' where

,"I’.": Eq1 — E; is a contraction of Ej. Also R (p) = p .and the derivative
of, R at p is the inclusion of E; into Mp.

Proof. One applies 3.3. Themap R of 3.3, say R, is
defined in a ynei»ghbourhood U.of 0 in E; into M. We now extend,

it to all of E1 to obtain the map R of 4.1. By 3.2 we can assume.

T' of 3.3 is a (global) contraction of E;. If x & E;, let Rx=
= 7-N ROT'NX where N is large enough so that TNy € U, 1t may be
verified with little effort that R is well-difined and satisfies the condi-

tions of 4, 1.
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The map R : E;j— M, or sometimes the image of R, is called

the stable manifold of p or T at p. The unstable manifold of p

or T at p is the stable manifold of 1 at p. These objects seem

to be fundamental in the study of the topological conjugacy problem for dif-

feomorphisms. An (elementary) periodic orbit is the finite set

k'i)eZ Tip where p is an (elementary) periodic point. The defini-
tion of the étable manifold for an elementary priodic orbit (or sometimes
elementafy periodic point) is as follows. Let (P E{-—> M be the sta-
ble manifold of ™ at p where m is the least periodof p, p

in our periodic orbit. Then R: Eli —> M is definedby R = Tt ¢

where 0 £ i < m and Ell is a copy of E;. Thus the stable manifold

—

of a periodic orbit is the 1-1 immersion R of the disjoint union of m
copies of a Euclidean space. The stable manifold of a periodic poéint B

is defined to be the aomponent of the stable manifold of the associated pe-

riodic orbit in which B lies, The unstable manifold of a periodic orbit

(periodic point) is the stéble manifold of the peiodic orbit (periodic point)

relative to T_l.

5. Elementary periodic points

Let {)  be the set of all diffeomorphisms of class C° of a
fixed compact C* manifold M ontoitself, w3 r > 0. Endow o
with the C* topology (see [7] ). It may be proved that 'y, is a com-
plete metric space. We recall that in a complete metric space the coun-

table union of open dense sets must be dense.

5.1 Theorem
Let M be a compact o manifold, r > 0, and D the spa-
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ce of Cr diffeomorphisms of M endowed with the Cr topology. Let
&)C oD be the set of T with the property that every periodic point of

T 1is elementary. Then 09 is a countable union of open dense sets.
We prove the following str:onger theorem which implies 5.1 (since

D St
6) = Q >+ G;\ ) Z" denotes the positive integers). -
€

5.2 Theorem
L.et D beasin 5.1 and d)p be the set of diffeomofphisms
T with the propert that every periodic point of T of period £ p is

elementary. Then fp is open and dense in D,

We first show that ij is open OD . Let Toé 6; s

Ty —>T, in D, T; € D. It mus;c be shown that T;€ fp for lar-

ge enough 1i. Suppose not. Then there exist p'i: i=1, 2,.... (Pil £ P,

such that Tipi (Xi) = x5 and x; 1is not an elen{éntary periodic point of

T; of period pj- By choosing subsequences, we can assume Xj - X € M
and the p; are constant say p, Then Tpo'(xo) = X,. Thus

Xo is a periodic point of T of period p, £ p and elementary since

p .
T €& So the derivative of T © at x_ has no eigenvalue of absolu-

P o
Po

te value 1. On the other hand the derivative of Ti at X5 for all i
has an eigenvalue of absolute value 1. This is a contradiction since

T;i —> T in the Cr topology, r > o, and X; —> Xg-

0 .
We next show that \ p is dense in p-1’ p = 1, o = D.
o)
This will finish the proof of 5.2. Let v p be the analogue of \/Pp

with elementary replaced by transversal. Then it is sufficient to prove:

(1) GAP N GDp—l is dense in pp—l’ and (2) fp is dense in
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G)p. We first do the main step, (1).

For p =1, we use the following easily proved lemma.
5,3 Lemma
ILet T:M—> M be a diffeomorphism.” Then x ¢ M is a trans-
versal periodic point of T of period’ p "if and ohly if the graph F of
'fp and the diagonal A in Mx M intersect transversally at (p, p)
(i. e. the tangent space of A and r' at (p,p) span the tangent space
of MxM at (p,p')
Then a_general position theorem of differential topology applies to
yield that 6)1 is dense in )3 (see Thom [16] ).
Let T € p-1 and Pl, cees /jk be all the periodic points
of T of periodic £ p-1. Then one can find neighbourhoods N; of
}31 so that any periodic point of T in N = U.iljl N; of period¢ p
is one of the  [3; and elementary.
Now let 0 = ming ¢ cr, (M-N) 9 (x, Tix) where | il £ p-i.
Then % > 0. By possibly choosing smaller we can assume that
any set U of diameter <L 2 8 is contained in a coordinate neighbour
hood of M and hence that T (U), has the same property. Next for
X € M, let U (x), V(x), W (x) be neighbourhoods of radius S s
1/26 , 1/3 S respectively. Let (U, ,V, , W ) for L=1,...,q

be a finite set of these such that U W, = M, for each o choose a coor-

ST

dinate neighbourhood E, O CLTU.

-1
Then using the linear structure of E,, T-S " :D — E, isa

i | a1
well defined map where S=TP™' and D;={x ¢ G| s"'x ¢ E }.

By Sard's theorem, see e. g. [16} , choose a map g,( : D, - E, ) small
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e ihe £ ‘oo -1, s
with its first r derivatives so that T-S ] g: U —> Ea(‘ has 0 as
a regular value. Starting with o =1, let Ty =T outside Uy, Ty =
=T /gy on V; wusing 3.2a. Then T; restrictedto V; has trans-

versal periodic points of period p as can be seen as follows:
If x € Vi and Tlp (x) = x,- then Tlp (x) = T(p_l)

and Tix ='S*1x. So (TI—S_I)x=O and since T; - S_1 has a re-

p-1

T1x

gular value at 0, the derivative of T4 at x: is non-singular and

X is a transversal cingular point of T, of period p.
One makes the same construction for « =2, ..., q, making sure

that is so small with respect to the '"bump function' that the diffeo-

g
A
morphism retains its desirable qualities on N .and Wy, ..., W;_ 4.

This proves that Fp is dense in Fp-l'

/) —
We finally show that fp is dense in o Let T, € pp’

Then by 5.3 the periodic points of T of period € p are isolated,

P

hence finite in number, say Pl’ cees /3 K Let Ny, ..., N be
disjoint Euclidean neighbourhoods of the I3 i Then it is sufficient to
show that given i, 1< i & k, there exists a diffeomorphism
T:M-->M suchthat T = T0 outside of N;, T approximates TO,

" and T has }31 as an elementary periodic point. This can be easily
done using 3. 2a and the fact that linear transformationszwifh no eigenva-
lue of absolute value 1 are dense in all linear transformations. This fini-

shes the proof of 5. 2.

Remark
. If Té G) , then given an integer N, there exists only a finite

number of points of period £ N of T. This follows from 5.3. Hence
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T has only a countable number of periodic points.

6. Normal intersection

Two submanifolds W;, Wg of a manifold M have normal inter-
section if for each x €& W, 4l W,, the tangent space of W; and Wy

at x span the tangent space of M at x. A diffeomorphism

T: M ~> M has the normal intersection property if when fgl, 13 9
are generic periodic peoints of T, the stable manifold of ]‘3 1 and the
unstable manifold of P 5 have normal intersection (this definition is
clear even though the stable manifold is not strictly a submanifold).

Let CD and G) be as in the previous section and let C(a be the

subspace of G> of diffeomorphisms with the normal intersection property.

6.1 Theorem

2 is the countable intersection of open dense subsets of AD
(The first theorem of this kind seems to be [13]

Let our basic manifpld M have some fixed metric and let N (x),
for ¢ >0, x € M, denote the open & neighbourhood of x in M.

Let R+ be the set of positive real numbers.

6.1a Lemma ‘
For each pe€ Z ‘there exists a continuous function
Z Gp - R+ with the following property. If T & @ Xx € M
is a periodic point of T of period £ p, then CL [NS (T)(X ﬂWlxj CW(x),
where W (x) is either the stable or unstable manifold, \ (x)

or Wu(x) respectively, of x with respectto T.

Proof
It is clear that on an open neighbourhood Nok of each T)\ IS (pp
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that one can find a constant function £,  with the property of & of
6.1la. Let &, , Ny be acountable covering of f of this type,
& =1, 2, ---. Then let s' - 51 on Njy, é—min( e 15 e o)
on Ny - Ny, min ( ¢ 1, 2 9, 53) on Nj ‘Nl - Ny etc.. Then

4 1 is lower semicontinuous on F Fifxally, for example by Kelly,

p’ .
General Topology, New York’1955 p. 172 one can obtain the e of 8. 1a.

Now if x is a periodic point of T & Fp of period < p, let

'e"
[4 ~ LA

L (X)zLZ(X’T) CLLN )()/)W ()], € =s or ¢=u
Define ka, {e 27, tobe the subspace of 6) of diffeomorphisms
~ with the following property. If x,y ¢ M are perlodlc points of period
£p of TE€ 6)13, then at each point of Tk @Y (x)) N T_k ‘(L‘S(y)),

w' (x) and w® (y) have normal intersection.

6.2 Theorem
z“k, is open and dense in D,
Note that (6.1) fellows from (6. 2) because g = P ke >t P
For 6.2 we first remark that Ekp is clearly open in oD

Hence in view of 5. 2 it is sufficient to show that f kp is dense in
s
Let Te ojp. Denote by /gl, -, }3/2 the periodic points
v g T
of T of period € p with stable and unstable manifolds WiL =W ( ﬂ i),
(9" - : .
¢ =8, u,

t

We will consider only approximations T' of T which agree
with T on some neighbourhood V., of the f3 i and so that [51,

=1, ...,k are precisely the periodic points of T' of period <« p.

o
Let the corresponding stable manifolds of such a T! be noted by Wis
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i=1, ...,k etc.

OJ

'
With T' as above, there is a canonical map q W, = W?:|

i ’

T =s,u,i=1, ..., k, defined as follows. If x & W;°, m = period % |,
there is a positive integer N  such that Tmn(x) E Vy, forall N 2 N..
Let gx-= " MlopMBoy  mor x ¢ Win one takes n < ny < 0.

Then q is a well defined 1-1 immersion,

pr fix i, j§,1 <1, j < ko. It is sufficient for 6.2 to approxi-
mate T | by T! as above such that on the intersection of T‘ k (Liu' )
and ’I" -k (L.S, ), Wiu/ and stf have normal intersection where
Li“' = qu", LY =LY (EL T et “

u

The first stage of this argument is to replace Tk (Li ) and

T-k (Ljs) by submanifolds of M, Y; and Yy respectively'with the

following properties:

(6.3) The Yi are diffeomorphic to disks,

wi o™l (y,) ) v; D ™ (LY

w5 T2 (Y, ) Yy, D T'k(Ljs

j )

Here M1 is the least period of g i my that of Fj and ))GO
is interpreted as to mean "contains an open set containing'. Such Y;
cléarly exist from- 3.1, 3.2 and 4.1,

If T' isan approximation of T agreeing with T on a neigh-
bourhood V, ofthe [K; let  §Y¥; = Yi, i = 1,2. Then without
loss of generality we can assume

6.37) w¥>r™y/) P v p v ELH)

WD T2y, ) vy D TR
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Hence it is sufficient to find sucha T' with Y;' and Yo' having nor-

mal intersection.
The compact subset CL (Tolel - Yy) is soto speak a fundamen

tal domain of T 1 restricted to Wiu. Thus one may find without diffi-

culty connected open sets Zl’ Fad o in Wiu : with compact closures

which are each disjoint from their images under T™1  and in addition

2,0 2, D cL(r™lyy - vy

A

Let P-CL{T@'(ilﬂ v [ 4 > 0}

CL«{ T”'?(§1)'[ {> 1}

The following is easily checked.

Q

6.4 Lemma

pn T (Z, Ny, = ¢

¢

]

Qn Tt (Z’lﬂyz)

Let Up, Uq’ V be open sets such that
‘ - -1,z = _
UpD P, Ug2Q VOT (£:0 v, and Upp’\v-;@',
Uy N v=¢.

By the Thom transversality theorem Ll 6] and a suitable patching

by a Cm function (similar to 3. 2a) one can find an approximation T'

of T with the following properties:

/? and the

(a) T' =T on a neighbourhood V, of the i
o i

complement of V in M.

b)) T C T~1 ( Z 1) and Y, have normal intersection (i.e.
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j and T' [T 1J have normal intersection on
T [T 1] N Yz)

Suppose now that x € Y'; N Y's, and TPx ¢ Zl for some
integer m  where Z'l = q ( X 1). We will show that at x, Yi
and Yg have normal intersection. This is a consequence of the follow-
ing statements.

'
(a) myz o and T 5 E Yy

(b) Zl ‘s T'LT ( ] andso T'"™x & T
[T Z .

(c) there exists a neighbourhood of ™ X in Y’2 which is
in Ys.
It can be shown without difficulty that (a), (b), and (c) are conse-
quences of the choice of V.
Now one carries out exactly the same procedure with Z = q( Z
replacing 2 1 inthe argument. This gives us an approximation T"

of T' with the desired properties of 6. 2.

7. Elementary Singularities of a vector field.

We now pass from the diffeomorphism problem to the case of a dy-
némical system.,

Let M be a compact ¢’ manifold 1 £ ré¢ 00 and }3
space of all Cc’ vector fields on M withthe C’ topology. One may
put a Banach space structure on '3 if r£ ¢ . In any cases /'3
is a complete metric space.

A gingularity p of X on M is a point at which X vanishes.

Let p be a singularity of X on M. Then using some local product
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structure of the tangent bundle, in a neighbourhood U of p, X is a .
differentiable map, X : U —> Mp, whose derivate A at p is ali-
‘near transformation of ,,Mp.
' We will say that. p is an elementary singularity of X on M
- if the derivative A of X at p has no eigenvalue of real part one, and
transversal if A is an automorphism.

Let ( be the subset of /3 - such that if X€& C , X has on-

ly elementary singularities.

7.2 Theorem
7 .
C is an open dense set of ﬁ

To see that, one first checks the following lemma.

7.3 Lemma

Let X be avector fieldon M. Then x € M is a transversal
singular point of X if and only if X, as a cross-section in the tangent
bundle meets the zero cross-section over M transversally.

From this and the transversality theorem of Thom [1 6.1 one con-

cludes.

7.4 Lemma
Let C’ be the subset of F of vector fields on M which have
only transversal singular points. Then CI is an open dense subset of
)3 ~ Now' 7.2 follows from 7.4 as in the proof of 5. 2 where } p
was shown to be dense in @ P
Note that it X & C , oreven (C', by 7.3, the singular points

of X are isolated and hence finite in number.
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8. Elementary.closed orbits

Let d/ be a closed orbit of a vector field X on a manifold with
associated local diffeomorphism T : U—> < about p & (11 pJ
Then J/ will be called an elementary (transversal) closed orbit of X

if T has p as an elementary (transversal) fixed point.

8.1 Theorem

Let C o be the subspace of C (of section 7) of vector
fields X on M -~uch that every closed orbit of X is elementary. Then

C’ o 1is the countable intersection of open dense sets of /3) . L. Marcus

[1 8] has a theorem in this direction. Also R. Abraham has an indipendent
proof of 8.1 [17] .

If 3/ is a closed orbit of X on M, then one can assign a posi-
tive real number, the period of J as follows. Let x ¢ . Cﬂo(x) = x
where t, 2> 0, C’pt (x) # x, 0<& t< ty,. Then ty is an invariant
of a/', , the Eeriod of (f i

For a positive real number L, let C L cC consist of X
on M such that, if (f is a closed orbit of length £ L, then <}/ is ele-

mentary. ﬂ C)

Since C o T L €& Z + I, Wwith 7.2, 8.1 is a consequen-

ce of the following,

8.2 Theorem
= . C C)
For every positive L, L is open and dense in
The proof is somewhat similar to the proof of 5. 2.
First that C L is open in C follows from a similar argument

to that of 5.2 used in showing that fp is open in f . We leave this
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for the reader. ‘ s

It remains to show:. C) 1, s dense in C . Let X €& C . The
first step is to construct a finite number of open cells 'Ux of M ' of
codimension 1, transversal to X such that U;L D Vﬁ& where W
is a closed sub-disk of U, such that every trajectory of X passes
through some W, . It is a straightforward matter to show that such a set
of (U, Wd\) exists.

Fi;{ing A now, the next step is to approximate X by X', a
vector field on M equal to X outside a neighbourhood of W, so that
if <Y is a closed orbit of X' of length £ L, intersecting some fixed
neighbourhood of Vﬂ({( in U, then (Y is elementary. The existence
of such an approximation is sufficient for the proof of 8. 2.

The construction of the approximation X' of the pre(;eeding para-
graph is based on the methods of Section 2 and 5. We outline how this
is done. Let VO; be a compact neighbourhood of W, in U, . Then
let D < U bethe set of points x of U, such that (pt(X)é A
forsome t, 0 <t <€ 2L, andi T Dx
morphism, say really defined on some neighbourhood of D, in I{L .

—> Y{ the associated diffeo-

Now apply the methods of 5.2 to approximate T by T' suchthat T!'
is defined in a neighbourhood of D, andthat T' has only generic pe-
riodic points. Now using the construction of Section 2 and 3. 2a one

defines the above X' wusing T'.

9. Stable manifolds for a differential equation

The following is the global stable manifold theorem for singulari-

ties of a vector field.
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9.1 Theorem

Let X bea C = vector field ona C*° manifold generating a
1-parameter group 49 t» Wwith an elementary singularity at x5, € M.
Let E1CMXO be the subspace of the tangent. space of M at x, cor-
responding to the eigenvalues with real part negative. Then there is a
1-1 ¢* immersion ({/ B> M with the following properties:

(a) X 1is everywhere tangent to ‘;V (E1) andas t—>,

@ilx) — X, forall  XeY(Ey).

(b) Lf/(O) = X and the derivative of y/ at xo is the in-

clusion of E, into My,

Proof

It can be checked that the map R of 4.1 satisfies 9.1 using
(101 for T of 4.1.

Of course there is a local version of this theorem which can be found

for example in CZ] . One may also derive 9.1 directly from this. The

map \'/ of 9.1 or its image is called the stable manifold of x.
One has a stable manifold associated to an elementary closed orbit

of a differential equation by the following theorem.

9.2 Theborem
Let ¢ bean elementary closed orbit of a differential equation
X on M generating a 1-parameter group (lp t. Let x¢ J/ s
T : Z —> Z be an associated local diffeomorphism of " at x whith
derivative L at X, and E; the linear subspace of My tangent to
Z corresponding to the eigenvalues of L with absolute value £ 1. Then

there exists a contraction Tj i Eq —> E1 with the following true.



- 928 -
S. Smale

The construction preceeding 2.1 appliedto T, defines a manifold M,
with a vector field X, on M, Then there is a 1;1 immersion
\{/: My —> M mapping X, into X up to a scalar factor and (71/ (p)=
= X where p is the point of M, corresponding to’ (0, 0) of E1 x R
(in the definition of M,). |
For the proof we only need to note that ‘f/ is defined in a neigh-
bourhood of 0 x R and then extended to M, by the device used in the

proof of 4.1.

Then \}/ or its image is called the stable manifold of (J/ . The

unstable manifold of a singularity or closed orbit of X on M is the

respective stable manifold with respect to -X.
In general M, is either S'x E, or the twisted product.
If X is a dynamical system on-a manifold M, we saythat X

has the normal intersection property if the stable and unstable manifolds

of X have normal intersection with each other. Fixing compact M,

let Eo: )3 be as in the previous section and Olo be the set of
X in C

9.3 ’ Theorem

o With the normal intersection property.

02 o 1is the countable intersection of open and denseg sets ofv/:( .
This theorem and its proof are somewhat analagous to (6. 1).
For the proof of 9.3, let § : C L= R* be defined in a com
pletely analagous fashion to the 2 of (6.1a) where CL is defined
in section 8. Let X € L; and x be a singular point of X ora
closed orbit of period £ L. of X. Let Wrt (x), T = u,s be the unsta-

oY
ble manifold, stable manifold respectively of x and L° (x) =

= (0L (™ x) N VVZ (x) ) similar to the proof of 6. 1. Next let
&N
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J
CLI‘ bg the subspace of X  of C 1, With the following property:
If x, y are singular points or periodic orbits of X of period< L,
then at each point of ‘Pr w x))N Cf_r (L® (v)), W"(x) and
w® (y) have normal intersection. Here (/)t is generated by X and

r > 0. Then 9.3 is implied by the following.

9.4 Theorem

C

As in sectior 6, for the proof of 9.4, it is sufficient to approxi-

Lr is open and dense in 90 .

mate a given X € CL by a vector field in CgLr.

Also just as,in section 6, one defines maps éi and submanifolds
Y; of M. The only difference in the proof from that of 6.1 is in the de
tails of the construction of the approximation 'itself. One uses here exac-
tly the approximation in [1 3:] page 202. We will not repeat it here, but
only remark that one can do it a little simpler than in [1 3] by changing X
on a finite sequence of Euclidean cells one at a time.’

This completes the proof of 9, 3.

We conclude by remarking that if one takes for M, the 2-phere,
then 02 o 1is open as well as dense in /3 that each X & O o has
only a finite number of closed orbits, and by a theorem first stated essen-
tially by Andronov and Pontrjagin, X is structurally stable. In this case,
iie., M= Sz, density of Olo in ﬁ was first proved by M. Pei-
xoto [8] .
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